MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

A M S T E R D A M

STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Report S 212 (VP 12)

The asymptotic distribution for large m of Terpstra's statistic for the problem of m rankings

bу

Ph. van Elteren

(Prepublication)

1. Introduction

Consider m random vectors $\underline{x}^{(\alpha)}$ ($\alpha = 1, 2, ..., m$) with n components $\underline{x}^{(\alpha)}, \underline{x}^{(\alpha)}, ..., \underline{x}^{(\alpha)}$ being the results of measurements on n objects. M. FRIEDMAN (1937) and T.J. TERPSTRA (1955) have constructed distributionfree tests for the hypothesis H_{\cap} , that these vectors are independent and that for each lpha the components of $\underline{\mathbf{x}}^{(\mathbf{lpha})}$ have the same distributionfunction. Terpstra considered the more general case that an arbitrary number of components of each $x_i^{(\alpha)}$ is available. This number here is restricted to 1 except for section 5, where the case is treated that some observations are missing.

The alternatives for these tests are not precisely formulated by the authors but as their statistics can be considered as means of rankcorrelation-measures they will often lead to rejection of H_{\odot} when the vectors are positively correlated pair by pair.

Let $\underline{T}_{\alpha,\beta}$ be Kendall's rankcorrelation statistic (cf. KENDALL (1948), Chapters 1 and 2) for the vectors $\underline{x}^{(\alpha)}$ and $\underline{x}^{(\beta)}$ given by

$$(1.1) \qquad \qquad \underline{\underline{T}}_{\alpha,\beta} \stackrel{\text{def}}{=} \sum_{i < j} \underline{\underline{x}}_{ij}^{(\alpha)} \underline{\underline{x}}_{ij}^{(\beta)} , \qquad 1)$$

where

(1.2)
$$x_{ij}^{(\alpha)} \stackrel{\text{def}}{=} \operatorname{sgn}(\underline{x}_{i}^{(\alpha)} - \underline{x}_{j}^{(\alpha)})$$
 (cf. **D.** VAN DANTZIG and J. HEMELRIJK (1954)),

then Terpstra's statistic T is defined by

$$(1.3) \quad \underline{\underline{T}} \stackrel{\text{def}}{=} \sum_{\alpha < /3} \underline{\underline{T}}_{\alpha,/3} = \sum_{\alpha < /3} \sum_{1 < j} \underline{\underline{x}}_{1,j}^{(\alpha)} \underline{\underline{x}}_{1,j}^{(\beta)} =$$

$$\frac{1}{2} \sum_{1 < j} (\sum_{\alpha} \underline{\underline{x}}_{1,j}^{(\alpha)})^2 - \frac{1}{2} \sum_{1 < j} \sum_{\alpha} (\underline{\underline{x}}_{1,j}^{(\alpha)})^2.$$

Let $u_1^{(\alpha)}, u_2^{(\alpha)}, \ldots, u_{g_{\alpha}}^{(\alpha)}$ be the different values assumed by the components of vector $\underline{x}^{(\alpha)}$ in such order that $u_1^{(\alpha)} < u_2^{(\alpha)} < \cdots < u_{g_{\alpha}}^{(\alpha)}$, then the number of components of $\underline{x}^{(\alpha)}$ whose observed value is $u_h^{(\alpha)(1)}$ (i.e. the size of the h^{th} tie) is denoted by $t_h^{(\alpha)}$. 1) In this paper \propto and $\sqrt{3}$ are supposed to run through the values 1,2,...,m; i,j,k and 1 through 1,2,...,n and h through 1,2,..., g_{α} , with the restrictions mentioned under the summation symbols \sum . The random character of variable is denoted by underlining its symbol; an arbitrary value assumed by a random variable is often denoted by the same symbol not underlined.

For the construction of a distribution free test for H_0 based on the statistic \underline{T} , the distribution of \underline{T} under the randomization hypothesis H_0^i implied by H_0 is investigated. This hypothesis H_0^i states that all possibilities to allot for each α to values $u_1^{(\alpha)}$ values $u_2^{(\alpha)}$,..., $t_2^{(\alpha)}$ values $u_3^{(\alpha)}$ to the components of vector $\underline{x}^{(\alpha)}$ have the same probability. It follows that the test applies also if the components of $\underline{x}^{(\alpha)}$ denote ranks allotted to n objects in order of some qualitative property.

The following notation will be used (cf. TERPSTRA (1955))

$$\begin{cases}
G_2^{(\alpha)} & \text{def } 1 - \binom{n}{2} - 1 \sum_{h} \binom{t_h^{(\alpha)}}{2} & (n \ge 2) \\
G_2^{(\alpha)} & \text{def } 0 & (n < 2) & \text{an}
\end{cases}$$

$$\begin{cases}
G_3^{(\alpha)} & \text{def } 1 - \binom{n}{3} - 1 \sum_{h} \binom{t_h^{(\alpha)}}{3} & (n \ge 3) \\
G_3^{(\alpha)} & \text{def } 0 & (n < 3)
\end{cases}$$

If further

(1.6)
$$G_2 \stackrel{\text{def}}{=} m^{-1} \sum_{\alpha} G_2^{(\alpha)}$$

(1.7)
$$G_3 \stackrel{\text{def}}{=} m^{-1} \sum_{\alpha} G_3^{(\alpha)}$$

and

$$(1.8) \ \underline{\mathbf{x}}_{1,j} \stackrel{\text{def}}{=} \mathbf{m}^{-\frac{1}{2}} \sum_{\mathbf{G}} \underline{\mathbf{x}}_{1,j}^{(\alpha)}$$

(1.3) can be written as

(1.9)
$$\underline{T} = \frac{m}{2} \sum_{i < j} \frac{x^2}{x^{i}j} - \frac{1}{4} mn (n - 1)G_2$$
.

As G_2 is a constant under H_0^i the distribution of \underline{T} is determined by that of $\sum_{i < j} \underline{x_{ij}^2}$, the sum of squares of the signtest statistics $\underline{x_{ij}}$ applied to the differences $\underline{x_i^{(\alpha)}} - \underline{x_j^{(\alpha)}}$ for $\alpha = 1, 2, \ldots, m$.

²⁾ If in this paper the word "asymptotic" is used, it always refers to large values of m; the distribution of random variables is always considered under hypothesis H_{\circ} (except for section 5).

Terpstra's results contain the asymptotic distribution for $n\to\infty$ of <u>T</u>. In this paper the asymptotic distribution for $m\to\infty$ is considered. For that purpose the asymptotic distribution of Friedman's statistic S is used. That statistic is defined by

$$(1.10) \ \underline{S} \ \overset{\text{def}}{=} \ \frac{1}{4} \ \underline{\Sigma} \ (\sum_{\alpha} \sum_{j} \underline{x_{ij}})^2 = \frac{m}{4} \ \underline{\Sigma} \ (\sum_{j} \underline{x_{ij}})^2 = \frac{m}{4} \ \underline{\Sigma} \ \underline{x_{ij}}$$

where

(1.11)
$$\underline{x}_1 \stackrel{\text{def}}{=} \underline{\sum} \underline{x}_{ij}$$
.

If

$$(1.12) \lim_{m \to \infty} \left\{ 3G_2 + (n-2)G_3 \right\} > 0$$

2) the asymptotic distribution of

$$(1.13) \quad \underline{x}_{1} \stackrel{\text{def}}{=} \left[\left(n(n+1) \sum_{\alpha} \left\{ 1 - {n+1 \choose 3}^{-1} \sum_{\alpha} {t_{n}^{(\alpha)}}^{+1} \right\} \right]^{-1} .12\underline{s} =$$

$$= \left[n \left\{ 3G_{2} + (n-2)G_{3} \right\} \right]^{-1} .3 \sum_{i} \underline{x}_{i}^{2}$$

is a χ^2 -distribution with n - 1 degrees of freedom (cf. M. FRIED-MAN (1937), A. BENARD and PH. VAN ELTEREN (1953)).

Condition (1.12) is satisfied if the number of vectors $\underline{x}^{(\alpha)}$ with $g^{(\alpha)} \ge 2$ is O(m).

2. Asymptotic distribution of $\sum_{i < j} x_{ij}^2$ According to the central limit theorem for random vectors (cf. J.V. USPENSKY (1937) p. 318) the variables $\underline{x}_{i,i}$ asymptotically possess a multinormal distribution. The means and the covariance matrix of these variables under hypothesis $\mathrm{H}^{1}_{\mathrm{O}}$ are derived as follows (cf. TERPSTRA (1955)).

$$(2.1) \mathcal{E}_{\underline{x}_{i,j}} = m^{-\frac{1}{2}} \sum_{\alpha} \mathcal{E}_{\underline{x}_{i,j}}^{(\alpha)} = 0,$$

$$(2.2) \mathcal{L}_{\underline{x}_{ij}}^{2} = m^{-1} \sum_{\alpha} (\mathcal{L}_{\underline{x}_{ij}}^{(\alpha)})^{2} = m^{-1} \sum_{\alpha} G_{2}^{(\alpha)} = G_{2} \qquad (i \neq j) ,$$

$$(2.3) \quad 2x_{ij} = m^{-1} \sum_{\alpha} 2x_{ij} \frac{x^{(\alpha)}}{x^{ik}} = \frac{1}{3} m^{-1} \sum_{\alpha} G_{3}^{(\alpha)} = \frac{1}{3} G_{3} (\neq (i,j,k)),$$

²⁾ See p. 2.

(2.4)
$$2 \frac{x_{i,j}x_{kl}}{2} = 0$$
 (\(\neq (i,j,k,l))\),

and as $x_{i,j} = -x_{ji}$

$$e_{\underline{x}_{j}\underline{i}\underline{x}_{i}\underline{k}} = e_{\underline{x}_{i}\underline{j}\underline{x}_{k}\underline{i}} = -\frac{1}{3}G_{3}$$
 etc.

The asymptotic distribution of \underline{T} can, for each value of n, be determined from the identity

$$\sum_{i \le j} \underline{x}_{i,j}^2 = \sum_{\gamma} \lambda_{\gamma} \underline{z}_{\gamma}^2 \quad (\gamma = 1, 2, \dots, {n \choose 2}),$$

where the quantities $\underline{z}_{\,m{\gamma}}$ are asymptotically independent and N(0,1)distributed random variables and $\lambda_1, \lambda_2, \dots, \lambda_n$ are the latent roots of the known covariance matrix of the $\binom{n}{2}$ variables $\underline{x}_{i,i}$. The computation of these latent roots can be avoided if the following simple relation is used

(2.5)
$$\sum_{i \le j} \underline{x}_{ij}^2 = n^{-1} \left(\sum_{i} \underline{x}_{i}^2 + \sum_{i \le j \le k} \underline{x}_{ijk}^2 \right)$$

with \underline{x}_i defined by (1.11) and $\underline{x}_{i,ik}$ by

$$(2.6) \qquad \underline{x}_{i,jk} \stackrel{\text{def}}{=} \underline{x}_{i,j} + \underline{x}_{jk} + \underline{x}_{ki} .$$

The variables $\underline{x}_1,\underline{x}_2,\ldots,\underline{x}_n, \underline{x}_{123},\underline{x}_{124},\ldots,\underline{x}_{12n},$

 $\frac{x}{-134}$,..., $\frac{x}{-n-2}$,n-1,n possess asymptotically a multinormal distribution. Their means are zero and for the covariance of a variable \underline{x}_i and a variable \underline{x}_{ijk} is found

$$-2 \underbrace{\mathbf{x}_{1}}_{\mathbf{k}_{1}} \underbrace{\mathbf{x}_{1}}_{\mathbf{k}_{1}} = 0 \qquad (j < k < 1) .$$

Thus the variables \underline{x}_i are asymptotically independent of the variables \underline{x}_i and consequently $\sum_i \underline{x}_i^2$ is asymptotically independent

of $\sum_{i < j < k} \frac{z^{2} j k}{x^{i} j k}$.

As the asymptotic distribution of $\sum_{i < j < k} \frac{z^{2}}{x^{2}}$ is given by (1.12) only the asymptotic distribution of $\sum_{i < j < k} \frac{z^{2}}{x^{2}}$ has to be considered. The variables $\sum_{i j k}$ have asymptotically a multinormal distribution by

(2.7)
$$\frac{1}{2} \frac{x^2}{ijk} = 3 \frac{2}{2} \frac{x^2}{ij} - 6 \frac{2}{2} \frac{x}{ij} \frac{x}{ik} = 3 \frac{G_2}{2} - 2 \frac{G_3}{3} \quad (\neq (i,j,k))$$

(2.8)
$$\ell \underline{x}_{ijk}\underline{x}_{ijl} = \ell \underline{x}_{ij}^2 - 2\ell \underline{x}_{ij}\underline{x}_{ik} + 2\ell \underline{x}_{ij}\underline{x}_{kl} =$$

$$= \frac{1}{3} (3 G_2 - 2 G_3) \qquad (\neq (i,j,k,l)).$$

The other covariances are zero.

As this covariance matrix is singular, we use the following identity

(2.9)
$$\underline{x}_{ijk} = \underline{x}_{ijn} + \underline{x}_{ink} + \underline{x}_{njk}.$$

It follows from (2.9) that all variables \underline{x}_{ijk} can be expressed in terms of the variables \underline{x}_{ijn} , with $i < j \le n - 1$, whose covariance matrix $A = (a_{(ij),(kl)})$ ($i < j \le n - 1$; $k < l \le n - 1$) is defined by:

$$a_{(ij),(kl)} = \frac{-2x_{ijn}x_{kln}}{x_{kln}} =$$

$$= 3 G_2 - 2 G_3 \qquad \text{for } i = k; \ j = l,$$

$$= \frac{1}{3} (3 G_2 - 2 G_3) \text{ for } i = k; \ j \neq l \text{ or }$$

$$= 1; \ i \neq k,$$

$$= -\frac{1}{3} (3 G_2 - 2 G_3) \text{ for } i = l \text{ or } j = k,$$

$$= 0 \qquad \qquad \text{for } \neq (i,j,k,l).$$

Formula (2.9) gives the following identity:

The right hand member is a quadratic form in $x_{i,jn}$ with matrix

 $B = (b_{(ij)(kl)}) (i < j \le n-1, k < l \le n-1) given by:$

$$\begin{array}{lll} b(ij)(kl) &= n-2 \; \text{for} \; i = k; \; j = l \\ &= -1 & \text{for} \; i = k, \; j \neq l \; \text{or} \; j = l, \; i \neq k \\ &= +1 & \text{for} \; i = l \; \text{or} \; j = k \\ &= 0 & \text{for} \; \neq (i,j,k,l). \end{array}$$

The product AB is found to be a diagonal matrix with diagonal elements $\frac{1}{3}$ n(3 G₂ - 2 G₃). Hence, if 3 G₂ - 2 G₃ \neq 0 $A^{-1} = 3 n^{-1} (3 G_2 - 2 G_3)^{-1} B$

and thus

$$\frac{\mathbf{x}_{2}}{\mathbf{q}_{2}} \stackrel{\text{def}}{=} 3 \text{ n}^{-1} (3 \text{ G}_{2} - 2 \text{ G}_{3})^{-1} \sum_{i < j \le n-1}^{\infty} \frac{b_{(ij)(kl)} \mathbf{x}_{ijn} \mathbf{x}_{kln}}{b_{(2.10)}} = 3 \text{ n}^{-1} (3 \text{ G}_{2} - 2 \text{ G}_{3})^{-1} \sum_{i < j < k}^{\infty} \frac{\mathbf{x}_{ijk}^{2}}{b_{(ij)(kl)} \mathbf{x}_{ijn} \mathbf{x}_{kln}} = 0$$

asymptotically has a χ^2 -distribution with $\binom{n-1}{2}$ degrees of freedom. The following theorem is now easily derived from (1.9),(1.13), (2.5) and (2.10).

Theorem I:

The asymptotic distribution for $m\to\infty$ under H_0' of Terpstra's statistic \underline{T} is the convolution of the distributions of two independent variates:

1.
$$\frac{m}{6} \left\{ \beta G_2 + (n-2)G_3 \right\} \underline{X}_1 - \frac{1}{4} mn(n-1)G_2$$

2.
$$\frac{m}{6}$$
(3 G₂ - 2 G₃) \underline{x}_2

where \underline{X}_1 and \underline{X}_2 have χ^2 -distributions with n - 1 and $\binom{n-1}{2}$ degrees of freedom respectively.

3. Remarks about the application of theorem I

From (1.4) and (1.5) is deduced

(3.1)
$$3 G_2^{(\alpha)} - 2 G_3^{(\alpha)} = \frac{\left[n^3 + \sum_{h} \left\{2(t_h^{(\alpha)})^3 - 3n(t_h^{(\alpha)})^2\right\}\right]}{n(n-1)(n-2)}$$

If a tie of size t is divided into two ties of sizes u and v respectively (t = u + v), the value of 3 $G_2^{(\alpha)}$ - 2 $G_3^{(\alpha)}$ is increased by

$$(3.2) \frac{2(u^3 + v^3 - t^3) - 3n(u^2 + v^2 - t^2)}{n(n-1)(n-2)} = \frac{6 uv(n-t)}{n(n-1)(n-2)}$$

Now it is seen from (3.1) that $3 \text{ G}_2^{(\alpha)} - 2 \text{ G}_3^{(\alpha)} = 0$ if $g_{\alpha} = 1$ and from (3.2) that this also holds if $g_{\alpha} = 2$. In all other cases $3 \text{ G}_2^{(\alpha)} - 2 \text{ G}_3^{(\alpha)}$ will be positive. It follows that $3 \text{ G}_2 - 2 \text{ G}_3$ tends to zero if and only if the number of vectors with $g_{\alpha} \ge 3$ is $0(\text{m}^{1-\epsilon})$ (0 < \epsilon < 1) for large m, and then the asymptotic distribution will be a χ^2 -distribution with (n - 1) degrees of freedom. It follows also that, if for all vectors $g_{\alpha} \le 2$, Terpstra's and Friedman's tests are equivalent as then all $\underline{x}_{i,i,k}$ are zero and thus

$$\sum_{i < j} \underline{x}_{ij}^2 = n^{-1} \sum_{i} \underline{x}_{i}^2.$$

Now the case that 3 $\rm G_2$ - 2 $\rm G_3$ converges to a positive value is considered. Then Terpstra's statistic $\rm T$ can be written in the following form

(3.3)
$$\underline{\mathbf{T}} = \frac{m}{6} (3 G_2 - 2 G_3) \underline{\mathbf{X}} - \frac{1}{4} mn(n - 1) G_2$$

where

(3.4)
$$\underline{x} = \frac{3 G_2 + (n-2)G_3}{3 G_2 - 2 G_3} \underline{x}_1 + \underline{x}_2 = c \underline{x}_1 + \underline{x}_2$$
 (say),

with \underline{X}_1 and \underline{X}_2 defined as in theorem I.

The asymptotic density function f(x) of \underline{X} can be expressed in the following way:

$$f(x) = c^{-1} \int_{0}^{x} f_{\frac{1}{2}(n-1)(n-2)}(x - z) f_{n-1}(\frac{z}{c}) dz$$

where $f_{\mathbf{v}}(\mathbf{x})$ denotes the density function of the \mathbf{x}^2 -distribution with \mathbf{v} degrees of freedom.

If $\frac{1}{2}(n-1)$ is denoted by k and $\frac{1}{4}(n-1)(n-2)$ by 1, then (3.5) $f(x) = 2^{-(k+1)}c^{-1}\{T(k)T(1)\}^{-1}\int_{c}^{x}e^{\frac{x-z}{2c}}\frac{z}{2c}(x-z)^{1-1}(\frac{z}{c})^{k-1}dz$ $= 2^{-(k+1)}c^{-k}b^{-(k+1-1)}\{T(k)T(1)\}^{-1}e^{\frac{C}{2c}}\int_{c}^{bx}e^{-\frac{1}{2}t}t^{1-1}(bx-t)^{k-1}dt$, where $b = 1 - c^{-1}$, $t = (x-z)(1-c^{-1})$.

For odd values of n, k is an integer number and thus

$$\int\limits_{0}^{bx} e^{-\frac{1}{2}t} t^{1-1} (bx - t)^{k-1} dt = \sum_{j=0}^{k-1} (-1)^{j} \binom{k-1}{j} (bx)^{k-1-j} \int\limits_{0}^{bx} e^{-\frac{1}{2}t} t^{1+j-1} dt.$$

It follows that:

(3.6)
$$f(x) = (2c)^{-k}b^{-1}\{T(1)\}^{-1}e^{\frac{x}{2c}\sum_{j=0}^{k-1}(-\frac{2}{b})}\frac{j}{T(j+1)T(k-j)}x^{k-1-j}$$
.

where $F_{\gamma}(x)$ is the distribution function of the χ^2 -distribution with γ degrees of freedom.

If F(x) is the distribution function of X, (3.6) gives

$$(3.7) \ F(x) = (2c)^{-k} b^{-1} \left\{ \Gamma(1) \right\}^{-1} \sum_{j=0}^{k-1} (-\frac{2}{b})^j \frac{\Gamma(1+j)}{\Gamma(j+1)\Gamma(k-j)} I_{k-1-j,2(1+j)}(x),$$
 where $I_{r,s}(x) \stackrel{\text{def}}{=} \int_0^x e^{-\frac{t}{2c}} t^r F_s(bt) dt$ (r integer, $r \ge 0$, s > 0) and by induction

(3.8)
$$I_{r,s}(x) = 2c \sum_{i=0}^{r} e^{i} r!^{i} \left\{ 2^{r} b^{\frac{s}{2}} \frac{T(r + \frac{s}{2} - i)}{T(\frac{s}{2})} F_{2r+s-2i}(x) - 2^{i} e^{\frac{x}{2c}} x^{r-i} F_{s}(bx) \right\},$$

where r'i denotes the i-th factorial power of r.

Substituting (3.8) in (3.7) interchanging the order of summation and putting h = k - 1 - i the following expression is found

(3.9)
$$F(x) = \frac{1}{\Gamma(1)} \sum_{h=0}^{k-1} \sum_{j=0}^{h} \frac{(-1)^{j}}{\Gamma(h-j+1)\Gamma(j+1)} x($$

$$\times \left\{ T(h+1)F_{2(h+1)}(x) - \left(\frac{c}{c-1}\right)^{1+j}T(1+j)e^{-\frac{x}{2c}}\left(\frac{x}{2}\right)^{h-j}F_{2(1+j)}(x(1-c^{-1})) \right\}.$$

In this way for odd values of n, a finite expansion of F(x) in terms of χ^2 -distributionfunctions is derived. For instance for n=3 (k=1; l=7)

(3.10)
$$F(x) = \frac{1}{\Gamma(\frac{1}{2})} \left\{ \Gamma(\frac{1}{2}) F_1(x) - (\frac{c}{c-1})^{\frac{1}{2}} \Gamma(\frac{1}{2}) e^{-\frac{x}{2c}} F_1(x(1-c^{-1})) \right\}$$

$$= F_{1}(x) - \sqrt{\frac{c}{c-1}} \cdot e^{-\frac{x}{2c}} F_{1}(x(1 - c^{-1}))$$
or for large x
$$F(x) \approx 1 - \sqrt{\frac{c}{c-1}} \cdot e^{-\frac{x}{2c}}.$$

For even values of n, k is equal to an integer $+\frac{1}{2}$, and formula (3.5) gives an infinite expansion, in terms with alternating signs. In that case, the expansion in positive terms, due to H. ROBBINS and E.J.G. PITMAN (1949) seems to be preferable. It gives:

(3.11)
$$F(x) = \sum_{j=0}^{\infty} K_j F_{\frac{1}{2}n(n-1)+2j}(x)$$

with

$$K_{j} \stackrel{\text{def}}{=} \frac{(n-3+2)(n-3+4)...(n-3+2j)}{2} (\frac{c-1}{c})^{j} c^{-\frac{1}{2}(n-1)}$$

This expansion is only useful for small values of n, as the series (3.11) converges too slowly for larger values. For large even and odd values of n, numerical convolution of the distributions of $c\underline{X}_1$ and \underline{X}_2 will be easier than the application of the formulas (3.9) or (3.11).

 Ψ_ullet Comparison of the exact and the asymptotic distribution of ${f T}$

The asymptotic distribution of \underline{T} defined in theorem I will in practice be used as an approximation to the exact distribution of \underline{T} for relatively large values of m. For the exact distribution of \underline{X} mean and variance can be derived by (3.3) from Terpstra's results for \underline{T} (cf. TERPSTRA (1955). They are

$$\frac{2}{2} \underbrace{X} = \frac{3}{2} n(n - 1) G_2(3 G_2 - 2 G_3)^{-1}$$
and
$$G^2 \underbrace{X} = 36 m^{-2}(3 G_2 - 2 G_3)^{-2} G^2 \underbrace{T} = 1$$

$$= n(n - 1)(3 G_2 - 2 G_3)^{-2} \cdot \left[2(n - 2) \underbrace{G_3^2 - m^{-2} \underbrace{X}(G_3^{(\alpha)})^2} + 9 \underbrace{G_2^2 - m^{-2} \underbrace{X}(G_2^{(\alpha)})^2} \right] + 1$$

And for the asymptotic distribution (cf. (3.4))

$$\frac{2x}{2} = c \cdot 2x_1 + 2x_2 = \frac{3}{2} n(n - 1)G_2(3G_2 - 2G_3)^{-1}$$
and
$$G^2(x) = c^2G^2(x_1) + G^2(x_2) = n(n - 1)(3G_2 - 2G_3)^{-2} \times \{2(n - 2)G_3^2 + 9G_2^2\}.$$

Exact and asymptotic distribution have the same mean and the exact variance of \underline{X} is always smaller than the asymptotic variance. In proportion to the exact variance the difference is $O(m^{-1})$.

The author computed the exact distribution of \underline{X} for n=3, m=3.4.5.6 and $g_{\alpha}=3$ ($\alpha=1,2,...,m$) (hence c=n+1=4) and compared them to the corresponding asymptotic distribution (cf. (3.10)).

In table I the frequencies fq(X) $\stackrel{\text{def}}{=} 6^{m-1}P[X=X]$ and the tailprobabilities $P[X \ge X]$ for the exact distribution and $P[X \ge X] = 1 - F(X)$ for the asymptotic distribution are given and in chart I a grafical representation of $P[X \ge X]$. For the values of X till about X = 20 the asymptotic distribution appearently underestimates the tailprobabilities, for values larger than about X = 30, it overestimates them. The long tail of the asymptotic distribution to the right may explain its larger variance (see above). Near its 5 percent point (round X = 25) the asymptotic distribution gives a relatively good approximation to its tailprobabilities even for such small values of m as considered here.

Distribution of $\underline{X} = 6 \text{ m}^{-1}\underline{T} + 9 \text{ for } n = 3 \text{ and}$:

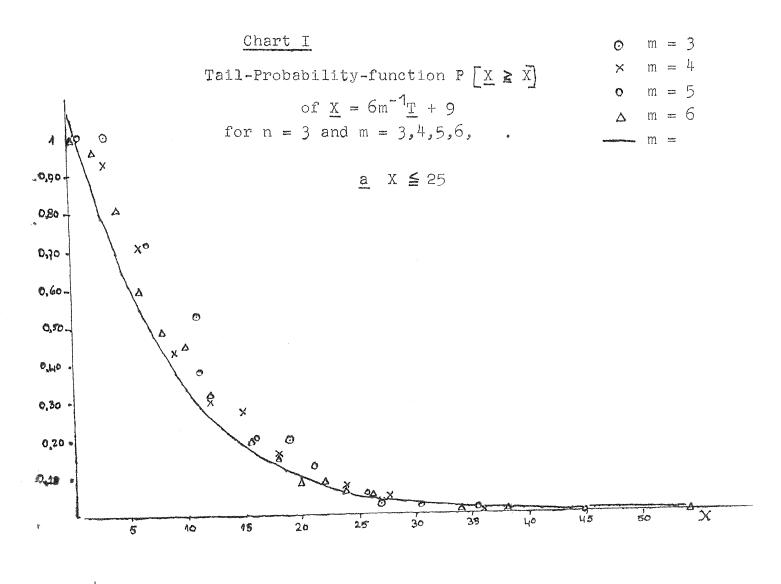
	m = 3		m = 4		m = 5		m = 6		m = ∞
Х	fq(X)	P[X≷X]	fq(X)	$P[X \ge X]$	fq(X)	P[XeX]	fq(X)	P(X≥X)	$P(X \ge X)$
0		***	15	1	6002	4000	. 310	1	1
1,8	-	cone	****	enois .	370 .	1	****	9940	0,8756
2	-	ecogar	em	esso	6993	econ	1200	0,9601	0,8581
3	17	1	48	0,9306		9669	-	Mod	0,7708
4	-	NO.07		5000	None	aboq	1680	0,8058	0,6876
6	-	****	60	0,7083	glegy	••••	825	0,5898	0,5413
6,6	•	***	word	омуь.	430	0,7145	Man	8000	0,5030
8	-	•••	wage	ese e	609	cond (300	0,4837	0,4234
9	-	•••	28	0,4306	tour	6593	***	PAGES	0,3741
10	_	-	edg	4609	464G	ana	1080	0,4451	0,3303
11	12	0,5278	ates	6000	-	2096	***	95top	0,2917
11,4	***		: excepts	MATERIA	240	0,3827	. 🖚		0,2775
12	800		6	0,3009	ettos	conto	900	0,3062	0,2575
15	**		24	0,2731	ange	4000	•••	enterer :	0,1770
16	4000	Reduc	entoso	660/9	606 ₂ 5	see (300	0,1905	0,1563
16,2	•••	******	69900	ejesta	95	0,1975	***	excev	0,1524
18	***	***	20	0,1620	*****	Mose	470	0,1519	0,1217
19	6	0,194	esot e	6000	elitos	mp	MOSA.	400%	0,1074
20	ecope	**	2228	acedo	4002	****	120	0,0914	0,0948
21	0 0000	****	4000	Michael	100	0,1242		4000	0,0836
22	acca.	••it	****	40009	wares	*****	120	0,0760	0,0738
24	deco	****	6	0,0694	disole	. 10000	66	0,0606	0,0575
25,8	****	**	antog	0000	30	0,0471	***	Stores	0,0459
26	*	-	ena -	ecos	**	ence.	120	0,0521	0,0448
27	1	0,0278	8	0,0417	***	+va 1	ecos.	duy	0,0395
28	ega	***	9000	e%§.	escone	4005	180	0,0367	0,0349
30,6	\$000E	, inus	43.00	. ***	20	0,0239	40000	****	0,0252
34	1000	***	9000	,000	edita	MOCH	42	0,0135	0,0165
35,4	4005	estes	dispo		10	0,0085	***	edodg g	0,0138
36 28	eage	4605	1	0,0046	. ****	Security	20	0,0081	0,0128
38 44	4608	4965b	Miles	940	6 902	. ****	30	0,0055	0,0100
45	****	•••	4009	· entos	QOMP	69000	12	0,0017	0,0047
54	**************************************	***	toopl		1	0,0008		mana a	0,0042
74	*		**			a gopy	1	0,0001	0,0014

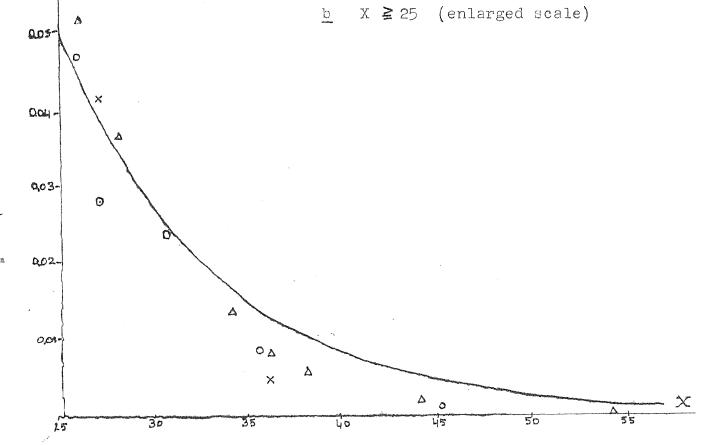
 $fq(X) \stackrel{\text{def}}{=} 6^{m-1} P[\underline{X} = X].$

Distribution of $X = 6 \text{ m}^{-1} + 9 \text{ for } n = 3 \text{ and}$:

	m == 3		. m = 4		m = 5		m = 6		m = 00
X	fq(X)	$P[X \ge X]$	fq(X)	$P[X \ge X]$	fq(X)	P[X≷X]	fq(X)	P(X≥X)	$P(X \ge X)$
0			15	1	****	40000	310	1	1
1,8			States	essis	370	1	Mana	****	0,8756
2	***************************************	6mps	etted	4500g	g1999.	escox	1200	0,9601	0,8581
3	17	1	48	0,9306	etwe	#060 0		9900	0,7708
4	800	***	*****	899	60050	ána .	1680	0,8058	0,6876
6	wood	*****	60	0,7083	enodo	6009	825	0,5898	0,5413
6,6	40000	ange .	q ueds	estes.	430	0,7145	***	80000	0,5030
8	entg	424	was	4000	****	6003	300	0,4837	0,4234
9		809	28	0,4306	Great	M0006		64935	0,3741
10	donah		erto	4000	****	en e	1080	0,4451	0,3303
11	12	0,5278	Miste	****	_	9990	4000	6706	0,2917
11,4	N\$100	8000a		46500	240	0,3827		(•••	0,2775
12	4999		6	0,3009		Renge	900	0,3062	0,2575
15	****	9000	24	0,2731	100	9005		cioles	0,1770
16	4000	\$600	doba	869/89		9489	300	0,1905	0,1563
16,2	cus	****	e4556	100%	95	0,1975	-	A0000	0,1524
18	dengi		20	0,1620		98500	470	0,1519	0,1217
19	6	0,1944	•	0669	-	web	-	600m	0,1074
20	goods.	***) #000			Assets	120	0,0914	0,0948
21	erexido	sterrity	*****	Mgos	100	0,1242	_	940)	0,0836
22	*****	6439	992	cota		#40	120	0,0760	0,0738
24	*000	annas	6	0,0694	***	enote:	66	0,0606	0,0575
25,8	***************************************	4000	entes	8009	30	0,0471		Servan	0,0459
26	į.	ages	4040	wood	-	Mos	120	0,0521	0,0448
27	1	0,0278	8	0,0417	-	spila	-	enen.	0,0395
28	elegade	dotos	9330	omq	_	4403	180	0,0367	0,0349
30,6	10009	State	6000	· 650cc	20	0,0239	-	6600	0,0252
34	**************************************	9394	3000	6009	-	****	42	0,0135	0,0165
35,4	dents	anu	colon	60060	10	0,0085	•	MANAS	0,0138
36	· · · · · · · · · · · · · · · · · · ·	4594	1	0,0046	•••	9889	20	0,0081	0,0128
38	95100	40155	Ange	•666 :	-	. 4000	30	0,0055	0,0100
44	***	ava	4869	o enter		9060	12	0,0017	0,0047
45	Marging .	4000	Manya	(MB)	1	0,0008	-	Nonce	0,0042
54	- Approx	MANGE	869	nodes:	-	6,070	1	0,0001	0,0014

fq(X) $\stackrel{\text{def}}{=} 6^{m-1} P[\underline{X} = X]$.





5. Missing observations

If only $n^{(\alpha)}$ components of $x^{(\alpha)}$ have been observed ($\alpha = 1,2,...,m; n^{(\alpha)} < n$), the following modifications of hypothesis H; can be considered.

 H_0'' : All $\pi\{n^{(\alpha)}\}$ possibilities to allot for each α the observed values to the observed components of $\pi^{(\alpha)}$ have the same probability.

 $x^{(\alpha)}$ have the same probability.

H": All $\prod_{\alpha} \{n!/(n-n^{(\alpha)})!\}$ possibilities to take for each α $n^{(\alpha)}$ components of vector $\underline{x}^{(\alpha)}$ and allotting to them the observed values have the same probability.

Hypothesis H'' is appropriate if the components to be observed have been chosen according to a particular design (balanced in complete blocks e.g.) or if some observations fail and one has reasons to assume that this happens with different probabilities for different components of the same vector $\underline{\mathbf{x}}^{(\alpha)}$. Application of the generalization of the method of m rankings treated in Terpstra (1955) leads to a test for H'' valid for large n. We give here two tests of hypothesis $H_0^{\prime\prime\prime}$, valid for large m, which are less complicated than the corresponding tests for $H_0^{\prime\prime}$. These tests can be used if one has omitted observations at random in order to reduce the size of the experiment or if the probability of failure of an observation is the same for all components of $\underline{\mathbf{x}}^{(\alpha)}$

The statistics of these tests are \underline{T} and \underline{S} , defined by (1.9) and (1.10) respectively, if the definitions of $x_{ij}^{(\alpha)}$ (cf. (1.2)), $G_2^{(\alpha)}$ (cf. (1.4)) and $G_3^{(\alpha)}$ (cf. (1.5)) are modified in the following way:

(5.1)
$$\begin{cases} \underline{\mathbf{x}}_{1j}^{(\alpha)} \det \operatorname{sgn}(\underline{\mathbf{x}}_{1}^{(\alpha)} - \underline{\mathbf{x}}_{j}^{(\alpha)}) \text{ if both } \underline{\mathbf{x}}_{1}^{(\alpha)} \text{ and } \underline{\mathbf{x}}_{j}^{(\alpha)} \text{ are observed,} \\ \underline{\mathbf{x}}_{1j}^{(\alpha)} \det \operatorname{O} \operatorname{if} \underline{\mathbf{x}}_{1}^{(\alpha)} \text{ or } \underline{\mathbf{x}}_{j}^{(\alpha)} \text{ is not observed,} \end{cases}$$

(5.2)
$$G_2^{(\alpha)} \stackrel{\text{def}}{=} \frac{n^{(\alpha)}(n^{(\alpha)}-1) - \sum_h t_h^{(\alpha)}(t_h^{(\alpha)}-1)}{n(n-1)}$$
,

(5.3)
$$G_3^{(\alpha)} \stackrel{\text{def}}{=} \frac{n^{(\alpha)}(n^{(\alpha)}-1)(n^{(\alpha)}-2) - \sum_h t_h^{(\alpha)}(t_h^{(\alpha)}-1)(t_h^{(\alpha)}-2)}{n(n-1)(n-2)}$$
.

For the tie-sizes $t_h^{(\alpha)}$ the same definition holds as is given in section 1 (under (1.3)) but now their total for vector α equals $n^{(\alpha)}$ instead of n.

The modified statistics <u>S</u> and <u>T</u> respectively have under $H_0^{""}$ for large m the asymptotic distributions given above in (1.13) and theorem I respectively. The first remark in section 3 changes in so far the right hand member of (3.2) can not be zero except for the cases $n^{(\alpha)} = n$ or $n^{(\alpha)} = 0$. It follows that $3 G_2^{(\alpha)} - 2 G_3^{(\alpha)}$ is positive for $0 < n^{(\alpha)} < n$ if not all observed components of $\underline{x}^{(\alpha)}$ are equal.

Finally I want to thank Prof. Dr D. van Dantzig for his helpful suggestions which gave the paper its final form, Constance van Eeden who read the paper throuroughly and J.Th. Runnenburg, A. Benard and J. Fabius who suggested many improvements.